Energy efficient CMOS microprocessor design

نویسندگان

  • Thomas D. Burd
  • Robert W. Brodersen
چکیده

Reduction of power dissipation in microprocessor design is becoming a key design constraint. This is motivated not only by portable electronics, in which battery weight and size is critical, but by heat dissipation issues in larger desktop and parallel machines as well. By identifying the major modes of computation of these processors and by proposing figures of merit for each of these modes, a power analysis methodology is developed. It allows the energy efficiency of various architectures to be quantified, and provides techniques for either individually optimizing or trading off throughput and energy consumption. The methodology is then used to qualify three important design principles for energy efficient microprocessor design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Low Power Energy Efficient SRAM Cell With Reduced Power Consumption using MTCMOS Technique

In modern high performance integrated circuits, maximum of the total active mode energy is consumed due to leakage current. SRAM cell array is main source of leakage current since majority of transistor are utilized for on-chip memory in today high performance microprocessor and system on chip designs. Therefore the design of low leakage SRAM is required. Reducing power dissipation, supply volt...

متن کامل

Timing-Error Detection Design Considerations in Subthreshold: An 8-bit Microprocessor in 65 nm CMOS

This paper presents the first known timing-error detection (TED) microprocessor able to operate in subthreshold. Since the minimum energy point (MEP) of static CMOS logic is in subthreshold, there is a strong motivation to design ultra-low-power systems that can operate in this region. However, exponential dependencies in subthreshold, require systems with either excessively large safety margin...

متن کامل

Optimal Sequencing Energy Allocation for CMOS Integrated Systems

All synchronous CMOS integrated systems have to pay some sequencing overhead. This overhead includes the skew and the jitter of the clock. It also includes the setup time and the clock-to-output delay of the flip-flops. This paper discusses how much energy should be allocated for sequencing in these systems. It is pointed out that providing too little energy is just as bad as providing too much...

متن کامل

Design of power-efficient adiabatic charging circuit in 0.18μm CMOS technology

In energy supply applications for low-power sensors, there are cases where energy should be transmitted from a low-power battery to an output stage load capacitor. This paper presents an adiabatic charging circuit with a parallel switches approach that connects to a low-power battery and charges the load capacitor using a buck converter which operates in continuous conduction mode (CCM). A gate...

متن کامل

Ultra-Low-Power Digital Design with Body Biasing for Low Area and Performance-Efficient Operation

We present a design methodology towards minimum-area maximum-performance designs in sub-/ near-threshold operation. Our methodology is based on a new metric called performance-per-area. Unlike conventional gate sizing, we use forward body biasing at synthesis time to render faster, smaller and more energy-efficient circuits. Our theory introduces body biasing into delay and energy models in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995